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DISCLAIMER 

This report was prepared by the NAHB Research Center, Inc., as an account of work sponsored 
by the U.S. Department of Energy (DOE) and SSHC, Inc., Solid State Heating Division. None 
of the members, nor any person acting on behalf of either: 

a. Makes any warranty or representation, express or implied, with respect to the accuracy, 
completeness, or usefulness of the information contained in this report, or that the use of 
any apparatus, method, or process disclosed in this report may not infringe privately 
owned rights; or 

Assumes any liability with respect to the use of, or for damages resulting from the use 
of, any information, apparatus, method, or process disclosed in this report. 

b. 
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PREFACE 

The NAHB Research Center under the auspices of the Advanced Housing Technology Program 
(AHTP) sponsored by the U.S. Department of Energy (DOE), selected Enerjoy PeopleHeaters TM 
as a promising and innovative emerging technology. Enerjoy PeopleHeaters TM are surface- 
mounted, ceiling radiant heat panels. The Enerjoy system represents an innovative approach to 
space heating because of the panel’s low power density and focus on the principles of radiant 
heat transfer, to be discussed in detail. The Enerjoy radiant system was identified as having 
potential for contribution to greater energy efficiency and productivity in housing. 

The first phase of the AHTP investigated the underlying dynamic of diffusion of innovation in 
the housing industry, devised an innovative method for assessing emerging innovations, and 
recommended industry-wide strategies for accelerating diffusion of innovations. 

In this, the second phase of AHTP, the Research Center offered to undertake technology 
assessment and commercialization assistance by conducting case studies of specific innovations 
with individual firms on a competitive, cost-sharing basis. The Research Center chose 
innovations that offered the most potential to improve product energy efficiency, quality, and 
cost-effectiveness in the U.S. home building industry. Another consideration in the selection was 
the extent to which such innovations allowed the Research Center to investigate and validate in 
more detail the assessment methodology and give it an opportunity to implement and test the 
effectiveness of some of its recommended strategies for facilitating commercialization of 
innovations. 
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EXECUTIVE SUMMARY 

Heat can be transferred in three ways--by conduction, convection, and radiation. Most 
conventional heating systems in U.S. housing are convective systems--thermal comfort is 
delivered by heating the indoor air which then conveys heat to objects and occupants. Thermal 
comfort is, however, determined as much by the mean radiant temperature as the ambient air 
temperature. Interior spaces can be heated with a radiant source in much the same way as the 
sun heats the earth. With radiant heating systems such as the ceiling, surface-mounted Enerjoy 
system in this study, there is the potential for significant energy savings by warming objects and 
occupants and only indirectly heating the air. With fast-acting, radiant panels and thermostat 
control in each room, heat is supplied to the home in a manner similar to lighting. 

A review of the literature revealed little relevant, empirical evidence for energy savings and 
thermal comfort associated with ceiling, surface-mounted, radiant heating systems such as the 
Enerjoy system. Empirical studies used to discuss the energy and thermal comfort performance 
of radiant heating systems made little or no distinction among the various types of radiant heating 
systems. Since ceiling, surface-mounted radiant panels in contrast to other radiant systems are 
fast-acting and deliver a much higher proportion of their output as radiant heat, they can have 
substantial impact on both energy and thermal comfort performance. Additionally, many studies 
were performed in commercial or light industrial buildings. The dimensions, building materials 
and design, and heat loss characteristics of these buildings can be very different than residential 
structures. Computer models used to hypothesize energy or thermal comfort performance were 
not equipped to accurately characterize radiant systems or transient heating conditions. Clearly, 
testing the energy and thermal comfort performance in an occupied home could serve to expand 
the base of information on which discussions of various heating strategies are based. 

To this end, an Enerjoy radiant heating system, an air-to-air heat pump system, and a monitoring 
data acquisition system were installed in an occupied research home. Information on thermal 
comfort and energy consumption for alternating operation of the two heating systems was 
collected for approximately one-half of a heating season. This allowed a comparison of the 
Enerjoy radiant system and the more conventional, air-to-air heat pump system. Also, data on 
energy consumption from a zoned, electric baseboard heating system previously installed in the 
same house was available for comparison. 

Fast-acting, radiant heating systems such as Enerjoy that can recover quickly from setback and 
target the delivery of heat to objects and occupants have a significantly reduced installed capacity 
in comparison to more conventional heating systems. In this study, for the same system 
operating and outdoor design conditions, the installed capacity of the Enerjoy system was 2.5 
times less than the electric baseboard system and two times less than that of the heat pump 
system. Generally comparable levels of thermal comfort were provided by the radiant and heat 
pump systems. And the capacity of the installed Enerjoy system was sufficient to meet outdoor 
design conditions. As a result, the significantly reduced installed capacity of the Enerjoy radiant 
system should be of particular interest to utilities whose capacities are stressed or whose 
territories are experiencing rapid growth and development. 

Energy consumption savings of 33 percent were estimated for a typical record year in the 
Washington, DC area for the Enerjoy radiant system in comparison to the air-to-air heat pump 
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system and an estimated 52 percent energy savings in comparison to the electric baseboard 
system. The energy consumption data indicated that the Enerjoy radiant heating system would 
outperform both the heat pump and the electric baseboard systems regardless of climate. Because 
a portion of the energy savings with the Enerjoy system was related to room by room setback 
and the specific number and routines of the research home occupants, savings for other 
households may be different than those obtained in this study. The magnitude of the savings 
obtained for the working couple occupying the research home suggests that energy savings would 
be obtainable in a great portion of U.S. households. 

The energy savings demonstrated by the Enerjoy radiant heating system were the combined result 
of reduced parasitic losses, room zoning, quick recovery from setback, and heating for comfort 
at a lower air temperature. Both heating systems were operated for energy conservation with day 
and night setback strategies; the major difference being that heat pump operation was determined 
by state-of-the-art, programmable thermostat and radiant panel operation was occupant-controlled 
based on actual room occupation. Occupants of the monitored research home set room 
thermostats forward 8°F upon entering a room and returned the thermostat to setback upon 
exiting. In this way, the radiant system was operated like a lighting system with ambient 
background lighting in each room at all times and higher levels only activated when occupancy 
required. Achievement of local thermal comfort conditions in approximately ten to fifteen 
minutes and room wide conditions in approximately 45 minutes was confirmed by data analysis 
and acceptable to the occupants. Although not used in this field study, light or motion-sensitive 
thermostats would reduce occupant involvement in system operation and programmable 
thermostats would eliminate any transition period between setback and recovery conditions for 
occupants preferring more immediate and automatic system operation. The occupants of the test 
home preferred the radiant heating system over the forced-air system. They cited greater 
flexibility and lack of sinus irritation with the radiant system. 

Specific operating characteristics of the radiant system discussed in the literature were also 
addressed in the field study. Some thermal discomfort experienced due to panel cycling could 
be addressed with careful radiant panel location and distribution or an energy management system 
that modulates panel status. Vertical air temperature differences were well within standard 
comfort limits and less than differences experienced during operation of the forced air system. 

The energy savings demonstrated in this study indicate that fast-acting radiant systems such as 
the Enerjoy system have a role to play in increasing the energy efficiency of U.S. housing. The 
operation of a ceiling, surface-mounted radiant system in conjunction with ductless cooling or 
a cooling system with the air handler and all ducts inside the conditioned space may provide a 
more efficient combination heating and cooling system for areas of the U.S. where more than 
task cooling is required. Several areas of research that deserve further investigation are outlined 
in the final section of this report. 
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1.0 INTRODUCTION 

Because most homes in the United States are conditioned by forced-air systems, there is a 
tendency to define heat transfer in buildings with almost exclusive emphasis on convection. 
Principles of radiant heat transfer are not well understood by the general public and the dynamic 
interplay in buildings among the three forms of heat transfer will, for a long time to come, 
generate discussions among heat transfer experts. The Enerjoy case study provided the 
opportunity to further the understanding of heat transfer in residential structures. 

Enerjoy radiant heating panels have been commercially available for over ten years. The panels 
consist of a base of high-density fiberglass insulation board, a patented solid state heating element 
with a textured surface coating, and an aluminum frame. The panels are lightweight, have a one- 
inch profile, and are available for either 120V or 240V installations in dimensions ranging from 
2 feet by 2 feet to 4 feet by 8 feet. The panels have been installed in residential and commercial 
buildings, both new construction and retrofit.' Their ability to function on either direct or 
alternating current makes them well-suited to all locations, including remote ones. The Enerjoy 
system operates silently, cleanly, and with little to no required maintenance. Despite ample 
anecdotal evidence of both delivered thermal comfort and energy savings with Enerjoy radiant 
heating panels, market penetration of the system has not been significant. Surface-mounted, 
ceiling radiant heating systems such as the Enerjoy system often suffer from two general pre- 
conceived notions: 

All-electric heat is always expensive. 

Heat rises, so the ceiling is no place for a heating system. 

The overall objective of this case study was to determine the technical and energy performance 
of the Enerjoy heating system in providing thermal comfort in residential structures, in this way 
addressing these two concerns. Although the overall objective of the second phase of the AHTP 
was to perform both technical and commercialization assistance of selected innovative 
technologies, the resources required to perform a technical assessment of a little-studied 
innovation such as fast-acting, surface-mounted radiant ceiling panels precluded any study of 
commercialization. The implications that the results of the technical assessment have for the 
diffusion of this technology will be discussed in the conclusions and recommendations of this 
report. 

The Enerjoy case study was comprised of two tasks. The purpose of Task 1 was to review the 
literature to determine the basis for energy and thermal comfort performance claims with radiant 
heating systems and to use the results of this review in the design of a field test in which the 
radiant and a conventional heating system would be compared.2 In Task 2, evaluation of 
Enerjoy performance was based on energy consumption and thermal comfort data obtained and 
analyzed from an occupied research home. In this home, the Enerjoy panels were compared to 

1 The panel dimensions allow them to be used in suspended ceiling grids without modification. 

2 The 'Task 1 Report: Literature Review" is available as a separate NAHB Research Center document. 
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a forced-air, air-to-air heat pump system. The field test was designed to seek answers to 
questions generated by the literature review. 

2.0 BACKGROUND 

Most conventional heating systems in U.S. housing rely primarily on convection and provide 
thermal comfort by directly heating the interior air space and subsequently heating the space’s 
contents, Radiant heating systems target surfaces within the space, including occupants, for 
heating and only indirectly heat the air space. Proponents of radiant heating systems claim the 
systems have the potential for energy savings without sacrifice of thermal comfort by lowering 
the air temperature and heating people rather than entire buildings. In theory, significant energy 
savings are possible, but some research and resulting discussions in the literature questioned the 
soundness of the energy savings claims and raised questions regarding thermal comfort. 

Early residential radiant heating systems were popularized in Europe. The radiant systems were 
hydronic and either embedded in plaster ceilings or installed just behind the interior finish. The 
metal piping systems installed for radiant heat distribution were expensive and susceptible to 
leaks. Significant advances in piping, temperature sensing and monitoring electronics, and the 
advent of solid state radiant panels have resulted in renewed interest in both floor and ceiling 
radiant heating systems. 

There are several different types of radiant heating systems and distinction among them is 
important because their differences, when ignored, can result in misleading conclusions with 
regard to their appropriate use and performance. Radiant floor and ceiling systems can be located 
within the floor/ceiling materials or located directly behind the floor/ceiling surface material. All 
of these electric-resistance or hydronic systems are considered high-mass systems whose 
considerable thermal inertia require steady-state operation. Only surface-mounted ceiling panels 
are considered low-mass systems whose response time makes transient operation with 
substantially reduced installed capacity possible. Although there are several different types of 
radiant heating systems that claim greater comfort and/or energy savings, the Enerjoy surface- 
mounted, ceiling radiant panels have a unique combination of qualities. 

1. Quick recovery time - panels reach operating radiant surface temperature of 150°F to 
170°F in less than 5 minutes. 

Zoning - room zoning with thermostats that are designed to sense both air and radiant 
temperatures for more effective operation. 

Ease of installation - the electric-resistance panels are wired in the same manner as 
residential lighting, are lightweight, and have an extremely narrow one-inch profile. 

Versatility - the panels are suitable for primary or supplemental heating in new 
construction and retrofit. 

Panel design - Enerjoy panels are Solid State Radiant Panels TM that deliver more than 90 
percent of heat output as radiant. Dense insulation reduces conductive losses through the 

2. 

3. 

4. 

5.  
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backside. The low panel profile and surface composition reduces convection. The result 
is a truly radiant heat exchange system. 

If significant energy savings can be added to the list of other Enerjoy attributes, the accelerated 
diffusion of this technology could represent a contribution to the improvement of the overall 
energy efficiency of housing in the United States. 

The operation of ceiling radiant heating systems is not well understood by the general public. 
Questions consistently arise as to the wisdom of locating the heating system on the ceiling since 
it is "common knowledge that heat rises." In point of fact, heat does not rise, hot air rises. 
Radiant heat transfer, in which energy is transmitted by electro-magnetic waves, is unaffected by 
gravity. As with lighting, which travels by electro-magnetic wave, the best place for a truly 
radiant heating element is the ceiling or perhaps high on a wall where the emitting source has 
the best view of the space to be heated. It is perhaps the general public's lack of understanding 
and experience with a truly radiant heating system that represent the biggest hurdles to greater 
commercialization of radiant systems. 

The confusion regarding the operation of ceiling radiant heating systems is apparently not limited 
to the lay public. While the mechanics of heat transfer are well researched and documented, the 
application of these principles to the actual heating of buildings is less well understood. The 
dynamics of heat transfer in actual structures are exceedingly complex, particularly under 
transient conditions. It is possible for well-informed proponents of various heating strategies to 
disagree on how the principles of heat transfer actually play out in the heating of interior spaces. 
The literature review, in seeking to clarify the issues concerning the performance of radiant heat, 
found that much of the discussion in the literature is based on insufficient evidence from the field 
or does not convey the important differences among radiant heating systems. 

3.0 TASK 1 SUMMARY 

The literature search, in seeking to clarify the issues concerning the energy savings potential of 
radiant heat, found that much of the discussion in the literature is based on insufficient evidence 
from the field. Although the literature in general did not support significant energy savings with 
radiant heating, most of the discussions did not involve fast-acting, surface-mounted, ceiling 
panels and/or involved tests performed in non-residential buildings. Because both the type of 
radiant heating system and the structure in which the system is installed can have significant 
impact on the system's performance, the absence of actual data on the performance of fast-acting, 
ceiling panels in residential structures results in only hypothetical discussions. The potential 
energy savings with Enerjoy panels arise from the cumulative effect of: 

reduced parasitic losses; 
room zoning; 

reduced air temperature. 
quick recovery from setback; and 

The effects listed above do not represent special conditions but rather represent the conditions 
under which the Enerjoy radiant system is designed to operate in a residential setting. No 
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studies provided the testing conditions that would allow simultaneous demonstration of all the 
above effects. 

The actual energy savings to be expected in a home cannot be accurately predicted or even 
estimated with the documented information available. The computer modeling and field studies 
to date neither support nor refute the energy and thermal comfort performance claims specific 
to surface-mounted, radiant ceiling panels. Although much of the dynamics of home heating and 
the thermal comfort of occupants are understood and can be quantified, there is uncertainty with 
regards to local thermal comfort conditions and the dynamics of thermal comfort and energy 
performance for various heating systems under transient as compared to steady-state conditions. 
The following issues were raised in the literature without resolution: 

1. When the mean radiant temperature is elevated during recovery from setback to provide 
thermal comfort, for what period of time does a lower air temperature persist? 

Can thermal discomfort be associated with radiant panel cycling? ³ 

What kind of vertical air temperature differences are to be expected with fast-acting 
radiant panels in structures with low (7 to 10 feet) ceiling heights? 

How will the delivery of thermal comfort compare between surface-mounted, ceiling 
radiant heat and conventional warm air systems? 

What will the seasonal energy consumption be for the radiant panels compared to a 
conventional warm air system? 

How will empirical data from a radiant system operated in a residential structure compare 
to computer modeling data from the Building Comfort Analysis Program, a program 
developed to accurately account for radiant heat exchange? 

2. 

3. 

4. 

5. 

6.  

Little to no field research was found on the comparative energy efficiency of and delivery of 
thermal comfort by ceiling radiant systems and conventional forced-air systems in residential 
structures. Research often cited in discussions of the energy efficiency and thermal comfort 
claims associated with radiant heating systems involved computer modeling and/or field studies 
limited to light commercial and industrial buildings. In terms of heating, residential buildings 
can be clearly distinguished from commercial/industrial buildings by lower air change rates, lower 
ceiling heights, greater levels of insulation, and different occupants’ habits and thermal comfort 
requirements. These differences suggest the need for field study in residential structures. 

3 The radiant panels were either on or off; power to the panels was not graded; proportional control is, 
however, possible. 
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4.0 

Task 2 of the Enerjoy case study was designed to address the lack of data on the relative energy 
efficiency and delivery of thermal comfort by surface-mounted radiant heating systems and more 
conventional forced-air, convective heating systems in residential structures. The specific 
assertions made by the manufacturer regarding surface-mounted, ceiling radiant panels to be 
evaluated were: 

TASK 2 COMPARATIVE FIELD TEST 

1. 

2. 

ten to twenty percent less air infiltration than conventional convective systems. 

significantly reduced installed BTU capacity of the radiant system in comparison to a 
conventional forced-air, convective system at a given design load. 

significantly lower electricity consumption than zoned, electric baseboard heating. 

significantly lower energy costs than conventional convective systems, under transient 
conditions. 

maintained thermal comfort with quick recovery from a 6 to 8°F temperature setback. 

3. 

4. 

5. 

4.1 Experimental Design 

4.1.1 The Test House 

Prior research has demonstrated the acceptability and even the desirability of testing two heating 
systems in a single home. The method involves an alternating schedule over the course of one- 
half of the heating season, the half-season including a shoulder and conditions at or approaching 
design conditions for the location. 4 This method has the distinct advantage of eliminating 
confounding variables that are present when tests are conducted in more than one home. 

The Adaptable Fire-Safe Demonstration House (hereafter referred to as the AFSD House), a 
research home located in Bowie, Maryland, was selected for this case study because of the 
existence of a database on energy consumption from a previous research project and its 
occupancy by the family of a Research Center employee prepared for the demands of the field 
study. The AFSD House, built in 1990, is a two-story house approximately 2,200 ft² in size. The 
AFSD House is fairly typical of contemporary, single-family detached homes in the mid-Atlantic 
region of the United States: two by four wall construction, fiberglass insulation, 8-foot ceilings, 
and gypsum board interior walls and ceilings (see Appendix A for more complete documentation 
on the AFSD House). Unique features of the AFSD House were its modular construction, three 
foot passageways and hallways, and three-story elevator. The only one of these felt to have 
potential for significant impact on the field study was the elevator--this was disabled and the 
shaft sealed. 

4 The winter design temperature is the outdoor air temperature that is exceeded 97.5 percent of the time. 
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The forced-air heating system of the AFSD House was zoned by two heat pumps,' the ducting 
runs for the two floors being independent because of the structure's modular construction. The 
air handler and ducting for second floor heating was located in the unconditioned attic space. 
All ducting was wrapped and taped with ducting insulation. Ducting for the first floor was 
located in the semi-conditioned space of the basement. Ducting in the basement was not 
insulated. The exception to this was the family room. Because this room was over a crawl space 
foundation, the ducting for this space was wrapped and taped with ducting insulation. Both zones 
of the forced-air system were equipped with state of the are programmable thermostats for 
separate weekday and weekend setback strategies. The thermostats are described as "predictive" 
because of their ability to incorporate previous daily energy requirements into the ramping up of 
interior temperatures when recovering from setback. 

4.1.2 The Radiant Heating System 

The number, size, and location of radiant ceiling panels installed in the AFSD House were 
specified by the manufacturer! Research has indicated that standard heating design procedures 
established by the American Society for Heating, Refrigerating, and Air-conditioning Engineers 
(ASHRAE) may require modification for certain types of radiant heating.' Although calculation 
of the heating load of a structure is independent of the type of heating system to be used in a 
structure, fast-acting systems such as the Enerjoy radiant heating system provide the opportunity 
for greater reduction in the installed BTU-capacity if the heating load on a room-by-room basis 
can be accurately estimated. The Research Center provided the manufacturer with information 
from previous research on the heating of the AFSD House for calculations. The Enerjoy heating 
system installation consisted of 20 panels, 160 square feet in thirteen zones, with a resulting 
power density of approximately 4 watts per square foot of floor area. Panel and thermostat 
locations are included in Appendix B. The panels can be wired as either 240V or 12OV--all 
panels in the AFSD House were wired 240V. 

All 13 zones of the radiant system were equipped with Enerjoy hydraulic line voltage 
thermostats. These thermostats were specified by the manufacturer because of their narrow 
operating differential (1°F) and the ability of the exposed knob to sense both radiant and air 
temperature effects. The thermostats were located according to manufacturer's directions--their 
location being determined by considerations of user convenience and viewing angle with respect 
to the radiant panels. 

5 Both heat pumps were new units installed for this study and had Seasonal Energy Efficiency Ratings 
(SEERs) of approximately 10.25. The units were selected by a local contractor as typical for the area. 

6 Because the AFSD House was a retrofit installation, existing ceiling features (paddle fans, light fixtures, 
exhaust vents, sprinkler heads, and a skylight) prevented the location of some panels per manufacturer's 
specification. 

7 Howell, R.H. and S. Suranarayana, "Sizing of Radiant Heating Systems, Part I Ceiling Panels," ASHRAE 
Transactions, 96: 652-665, 1990. 
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4.1.3 The Monitoring and Data Acquisition System 

The monitoring equipment obtained and recorded data on the following parameters for 
approximately three months of the heating season. 

thermal comfort 

dry-bulb temperature 
operative temperature 
vertical air temperature difference 

energy 

metered electric consumption 
outdoor temperature 

The monitoring and data acquisition system used for the field study consisted of a Measured 
Performance Rating controller and Metrabyte DAS8 system.* 

Thermal comfort stations were located in three of the most frequently used rooms in the house: 
the family room, the dining room/kitchen, and the master bedroom? The locations of the 
stations within the three rooms are shown in Appendix B. Although the stations should be 
located to reflect occupancy patterns, the actual rather than simulated occupancy of this test house 
forced the stations more to the perimeter of the rooms. The stations consisted of three double- 
shielded, air temperature sensors located at 4, 43, and 93 inches from the floor, and a 6-inch 
hollow copper globe located at 43 inches with a temperature sensor sealed at its center. The 
sensors heights were determined in accordance with ASHRAE Standard 55-1992. 

The 6-inch hollow copper globes were originally intended to estimate the mean radiant 
temperature, as prescribed in chapter 13 of ASHRAE 1993 Fundamentals. When, as is the case 
in the evaluation of most convective systems, the air temperature and globe temperature are very 
similar, the globe is a good approximation of the mean radiant temperature. If the 43-inch air 
temperature is significantly different than the globe temperature, as was the case during the 
radiant system operation for this field study, the globe is a much better estimation of the 
operative temperature, not the mean radiant." Using the globe thermometer as an estimation 

A full description of the MPR and DAS8 system used to obtain and record data is available: "Volume IV 
Hardware Specifications, Measured Performance Rating System", a report prepared for the New York State 
Research and Development Authority by the NAHB Research Center, August 1991. 

9 Minute-averaged temperature data from three thermal comfort stations and two outdoor temperature sensors 
were recorded on a twenty channel data acquisition system. 

Berglund, L., R. Rascati, and M. L. Markel, "Radiant Heating and Control for Comfort During Transient 
Conditions," ASHRAE Transactions, Part 2: 765-775, 1982. The air and mean radiant temperatures effects on 
thermal comfort can be numerically combined into the operative temperature. An approximation of the operative 
temperature can be obtained by adding the air and mean radiant temperatures together and dividing by two; 
generally the air and mean radiant temperatures make equivalent contributions to thermal comfort. 
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of the operative temperature simplified evaluation of thermal comfort--this approach was used 
in this study." 

The sensitivity of the operative temperature globes to their location in a room during radiant 
heating system operation became apparent over the course of the research project. The globes 
were subsequently relocated to the indicated positions (directly underneath the largest panel in 
the three monitored rooms), approximately halfway through the testing period. 

Relative humidity sensors were not available as part of the three comfort stations and, as a result, 
relative humidity was spot-checked with a hand-held Solomat over the course of the data 
acquisition period. Air speeds were also checked with the Solomat on two occasions to assess 
air movement during operation of the forced-air heating system. 

Energy consumption for the heat pumps and the radiant panels was all electric. Two calibrated, 
pulse-initiating watt-hour meters monitored, separately, incidental and home-heating electric 
consumption. Electric service to both heating systems were wired so that current by the 
operating heating system was monitored by the meter dedicated to heating. Counts by both 
meters were summed hourly and recorded on a separate data acquisition system. The status of 
radiant panels in the three monitored rooms was recorded on a minute-by-minute basis on 
channels of the MPR system. 

4.1.4 Methods of Evaluation 

The relative performance of the Enerjoy and conventional heating system was evaluated 
according to the following methodology: 

1. Air infiltration - Two blower door tests were performed on the AFSD House. In the first 
test, the registers and cold air returns of the ducted heating system were left open as they 
would be during normal operation of the forced-air heating system. For the second test, 
all registers and the two cold air returns were sealed to effectively eliminate the ducting 
from the house. This simulated the configuration of the AFSD House if the ductless non- 
mechanically radiant heating system was the primary, permanent system. In this way, the 
induced air infiltration losses associated with a ducted and non-ducted heating system 
could be quantitatively compared. 

Installed BTU capacity - The installed Btu capacity of the heat pump, electric baseboard, 
and radiant panels are known and can be compared. A critical element of this comparison 
is the ability of the heating system to deliver thermal comfort during design conditions. 
Outdoor temperatures down to and below design conditions were encountered during the 
data acquisition period so that the sufficiency of installed capacity for the two systems 
could be assessed. 

2. 

11 This simplification, however, should not obscure the fact that an elevated operative temperature with 
respect to the air temperature necessarily implies a mean radiant temperature elevated above the operative 
temperature by an amount roughly equal to the difference between the air and operative temperature. 
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3. Energy savings under transient conditions - The asserted energy savings with the Enerjoy 
radiant heating system are the result of the combined effect of reduced parasitic losses, 
room-by-room zoning, quick recovery from setback, and reduced air temperature. The 
total effect of these phenomena should be significantly reduced building heat loss without 
sacrifice of occupant thermal comfort. 

Although it was beyond the scope of this field study to quantify that portion of any energy 
savings attributable to the individual phenomena of the four effects listed above, their total effect 
can be estimated. The energy consumption data obtained during alternate operation of the two 
heating systems permitted the determination of house load at different outdoor temperatures. 
During periods of radiant heating, thermostats were setback to 60°F when rooms were unoccupied 
and setup to 68°F when occupied. 12 This represented optimal operation of the radiant system 
under transient conditions. During periods of heat pump, forced-air heating, the two 
programmable thermostats had a setback of 60°F and setup of 68ºF. The weekday and weekend 
schedules of the AFSD House occupants were used to program day and night setbacks of the heat 
pump thermostats. The state-of-the-art programmable thermostats are designed to allow flexible 
timed recovery from setback based on previous day power requirements. This represented 
optimal operation of the two heat pumps under transient conditions. The comparison of daily 
electric energy consumption as it relates to outdoor temperature permitted an energy efficiency 
comparison of the two alternately operated heating systems. 

Previous research at the AFSD House involved installation of baseboard electric heat throughout 
the house. Room-by-room day and night setback schedules were employed during this study. 
Energy consumption as it relates to outdoor temperature was quantified for the baseboard heating 
system. This allowed comparison of the energy consumption of the radiant and baseboard 
heating systems for the same residential structure. 

4. Delivery of thermal comfort under transient conditions - An inextricable element of any 
comparison of heating system efficiencies is the delivery of thermal comfort to the 
occupants. Reduction in either the installed BTU capacity or seasonal energy 
consumption of any heating system is only relevant if thermal comfort can be maintained. 
Thermal comfort is defined in ANSI\ASHRAE Standard 55-1992 as "the condition of mind 
that expresses satisfaction with the thermal environment; it requires subjective evaluation." 
The environmental factors affecting thermal comfort have been determined: ambient air 
and mean radiant temperature, relative humidity, and air speed. 13 In this field study, 
data on air and operative temperature were recorded in three rooms on a minute by 
minute basis, the relative humidity was spot checked, and the air speed was not 
monitored. 

12 Bathrooms, because of their frequent, short-term use and the occupant's potentially lower clo value (the 
thermal contribution of clothing is expressed in a unit called a clo), were setback on manufacturer's 
recommendation to 62 to 63°F. Additionally, the master bedroom was night setback to 61 or 62ºF instead of 
60ºF, as the only occupied bedroom. 

13 Operative temperature is the primary environmental determinant of thermal comfort; relative humidity and 
air speed, unless extreme, are secondary effects. 
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The two heating systems were operated before data collection began in order to allow 
determination by the occupants of comfortable setback and set-forward temperature 
settings. Each heating system was operated in this manner for at least one week. The 
radiant and heat pump temperature strategies established as a result of the trial operations 
of the two systems were a setback of 60°F and set-forward of 68°F. 

Thermal comfort was evaluated by review of thermal discomfort surveys (see Appendix 
C). Whenever an occupant of the research home experienced thermal discomfort in one 
of the three monitored rooms, the individual completed a short survey. The 
environmental conditions corresponding to the time of discomfort as recorded by the 
monitoring system were later linked to each survey for evaluation. Patterns or 
generalizations regarding the operation and thermal comfort delivery of the two heating 
systems could in this manner be established. 

Assessment of specific issues - The minute-by-minute recording of environmental 
conditions in the three most used rooms of the AFSD House permitted evaluation of 
certain issues raised in literature discussions on the expected performance of the surface- 
mounted, ceiling radiant heating panels. The issues addressed were: 

time required for comfort conditions during recovery from setback 

localized versus room-wide comfort conditions during recovery from setback 

5. 

vertical air temperature difference 

effects on thermal comfort of panel cycling 

time duration of lower air temperature with respect to operative temperature (transient and 
steady-state conditions) 

5.0 

5.1 Air Infiltration 

Air infiltration is one of the primary determinants of heat loss in buildings. Air infiltration 
accounts for somewhere between 25 percent and 45 percent of the total heat loss in a typical 
home. 14 As conditioned air moves out of the building envelope, the energy required to heat or 
cool that air is lost. Research has shown that homes with forced-air heating systems can have 
air infiltration rates up to 36 percent greater than homes with non-ducted heating systems." 

TASK 2 FIELD TEST RESULTS 

14 Goldschmidt, V. W., "Average Infiltration Rates in Residences: Comparison of Electric and Combustion 
Heating Systems," Measured Air Leakage of Buildings, ASTM STP 904, H. R. Trechsel and P. L. Lagus, Eds., 
American Society for Testing and Materials, Philadelphia, 1986, pp. 70-98. 

15 Palmiter, L. S., I. A. Brown, and T. C. Bond, "Measured Infiltration and Ventilation in 472 All-electric 
Homes," ASHRAE Transactions, 91.15.3. 
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Airflow @ 50 Pascals (Air 
changes per hour - ACH) 

Estimated natural infiltration in 
ACH 

% Reduction in ACH 

Ducts Sealed - Radiant System Ducts Open - Heat Pump System 

13.97 15.84 

.88 .99 

12.5 Base 



Parameter 

Indoor/outdoor at at 
design conditions °F 

Assumed ACH 

Day and night 
setback strategies? 

Installed capacity - 
Btu/h (watts) 

% System 
Oversizing (at design 
conditions) 

Calculated Heating System 
Building Heat 

Loss Radiant Panel Radiant Panel 
(Right-J Baseboard (Enerjoy) (Kansas State) Electric Heat Pump 

57° 57" 57° 55° 63° 
(70° - 13') (70' - 13') (70' - 13') (65° - 10°) (72' - 9°) 

.7 .7 .4 .7 

No Yes Yes Yes Yes 

45,442 69,967 57,100 27,645 29,864 
(13,3 14) (20,500) (16,700) (8,100) (8,750) 

NA +54 +26 -40 -34 



calculation, air infiltration accounting for fully a third of the total heat loss in typical houses. 
Yet this value was assumed in this analysis. Despite limitations, the Right-J building heat loss 
calculation provides a basis for comparing the installed capacities of the three different heating 
systems. Note that the units for heat loss and resulting installed system capacity are either 
btu/h’s or watts. It is customary for heating and cooling contractors to work in btu/h’s and 
electric utilities to work in watts or kilowatts-both are provided here for convenience. 

The second column presents the installed capacity of the electric baseboard heating system from 
a previous research project. Note that the installed capacity is approximately 50 percent greater 
than the calculated design load of the building. System oversizing of up to 60 percent is standard 
practice when both day and night setback strategies are anticipated. 20 Setback strategies and 
room-by-room thermostatic control were used in previous research involving the electric 
baseboard system, making comparison of energy consumption between the electric baseboard and 
radiant panel systems meaningful. 

The third column contains information on the heat pumps installed at the AFSD House. The air- 
to-air heat pumps were a 1 ton unit for the second floor and a two ton unit supplying the first 
floor. Conventional heat pumps are often not operated on setback strategies. The predictive 
nature of the state-of-the-art programmable thermostats, however, allowed efficient operation of 
the heat pumps with setback strategies. The combined installed capacity of just the two heat 
pumps is actually approximately 41,000 btu/h’s. At design conditions, however, the installed 
capacity is most accurately estimated by adding the output of the backup strip heat (15 kilowatts) 
to the output of the heat pump at that particular temperature. This calculation is appropriate 
because the capacity of the heat pump depends on outdoor temperature and, at design conditions, 
the forced-air system is delivering heat primarily from the electric strip heat. Adding the output 
of the heat pumps at design temperatures to the strip heat results in the total installed capacity 
that is 26 percent greater than the calculated Right-J capacity. This extra capacity is the capacity 
required to meet the demands of day and night setbacks with the heat pump system. 

The fourth column shows the installed capacity of the Enerjoy radiant heating system in the 
AFSD House, The installed capacity of the Enerjoy system is 40 percent less than the installed 
capacity recommended by the Right-J analysis?’ Recall that the rapid response time and lower 
air temperatures possible with the radiant system permit significant reduction in installed 
capacity, even with day and night setback strategies. The installed capacity of the Enerjoy 
system is 2.5 times less than the electric baseboard system and 2 times less than the heat pump 
system. This is an important characteristic of the radiant system as it pertains to the demand an 
electric utility must plan to meet when design conditions occur or are exceeded. 22 

20 ASHRAE, 1993 ASHRAE Handbook: Fundamentals, 1993, pp. 25-14. 

21 Although the indoor/outdoor temperature differential used for the Right-J calculation is 2°F less than the 
differential used to calculate the Enerjoy installed capacity, this difference is only around 4 percent. 

22 The winter of 1993-1994 was severe and power outages at the test house did occur as the result of 
insufficient electric utility capacity. 
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In the last column, the installed capacity recommended by analysis at Kansas State University’s 
Department of Mechanical Engineering and Environmental Research Institute is presented. This 
calculation is based on a model developed by Drs. Jones and Chapman that has the following 
capabilities: 

Predict the combined effect of radiative, convective, and conductive heat transfer in a 
radiantly heated enclosure. 

Map the predicted comfort level distribution of occupants in the room. 

Model the effects of objects, such as furniture and partitions, on the comfort level 
distribution. 

Predict optimum placement of radiant heaters inside the room. 

Although the Kansas State model simulates steady-state conditions, their assessment of installed 
capacity as it relates to Enerjoy’s calculations is important verification of Enerjoy’s current 
standard installation procedures and protocols. Note that the Kansas State calculations are higher 
than the actual installed capacity following the manufacturer’s analysis. However, both the 
temperature differential and ACH assumed by Kansas State are significantly higher than those 
assumed for the Enerjoy calculation. These two factors alone may account for most of the 
difference in the two figures. The blower door tests performed on the AFSD House after the 
radiant system was installed suggest that the Kansas State assumption regarding ACH was closer 
to the actual rate than the value assumed for the manufacturer’s analysis. This information will 
be relevant when performance of the radiant heating system at and below design conditions 
encountered during the testing period is discussed later in this report. 

5.3 Energy Consumption Comparison 

For approximately one-half of the 1993-1994 heating season, electric consumption at the occupied 
AFSD House was monitored. The heating systems were wired so that their electric consumption 
was dedicated to one meter, and all incidental household electric consumption was monitored by 
the second meter. The radiant and heat pump systems were operated alternately in two week 
blocks when possible and for one week blocks otherwise. This was done to minimize the impact 
of intermittent operation on the heat pump predictive thermostats during heat pump operation and 
maximize the routine of room-by-room thermostat use during radiant panel operation. All 
window coverings on the south and west sides of the house were kept closed for the test period 
to minimize the effects of solar gain on energy consumption and to prevent direct solar radiation 
from having any impact on the operative temperature globes. The precision of the pulse 
tabulations were checked against manual readings on at least three occasions--on all occasions 
the pulse counts were within 2 percent of manual readings. 

Incidental electric household use contributes indirectly to home-heating and large variances in 
its consumption could have a significant impact on heating system energy requirements if the 
variances were to coincide with system operation. With two occupants, both fully employed 
outside the home, little variation was anticipated. Review of incidental electric consumption 
revealed significantly greater consumption on weekend days than weekdays but no other patterns 
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or large variances. Because heating system operation changes were performed at approximately 
midnight on Saturdays, weekend variances in incidental electric consumption should have had 
very little impact on heating energy analysis of the two heating systems. 

Gas consumption at the AFSD House was limited to operation of one driveway post light, the hot 
water heater, and the clothes dryer. The dryer’s operation, generally on each Saturday, was felt 
to have little to no impact on the heating energy analysis. The two other uses of gas were 
virtually unaffected by the operation of two heating systems on an alternating basis. 

5.3.1 Regression Analysis of Energy Consumption 

Total daily heating electric consumption was plotted against corresponding daily average outdoor 
temperature (Electric consumption was compiled on an hourly basis, outdoor temperature on a 
minute basis). The data were regressed on a linear basis with the results presented in Table 3. 

Table 3 
Regression Analysis on Energy Consumption and 
Outdoor Temperature for Three Heating Systems 

The standard errors of both the y-intercept and the slope coefficient for all three regressions are 
statistically significant. The R² values, which can be interpreted as the percent of variation in 
the values of X explained by variation in Y, are quite high, varying between 85 and 91 percent. 
Inspection of the distribution of data points about the regression lines revealed no evidence of 
patterns in the residuals, patterns that might suggest problems in the interpretation of the 
regression statistics. Linear forms appeared to be the most appropriate functional forms for all 
three regressions. 23 A streak of very cold weather during the test period resulted in outlying 

23 Because the efficiency of heat pump operation is a function of outdoor temperature, a non-linear 
relationship above the heat pumps’ balance points might be expected. The linear form, however, was the best fit 
over the entire range of data points. Since the data points are not a measure of the heat pumps’ efficiencies but 
rather the efficiency of the entire heating system, other factors such as delivery and parasitic losses, defrosting 
cycles, etc. may have overwhelmed efficiency gains with higher outdoor temperatures. 
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data points for both the heat pump and the radiant panels. None of the outliers were found to 
be influential. The regression results suggest that the estimated linear relationships between 
energy consumption and daily average outdoor temperature for the three heating systems are 
credible representations of the true relationships and can be used with acceptable levels of 
confidence. 

The three regression lines are shown in Figure 1. The negative slopes portray decreasing energy 
consumption with increasing outdoor temperature, as would be expected. The positions of the 
three regression lines indicate that the radiant panel heating system outperformed both the air-to- 
air heat pump and electric baseboard systems, regardless of the outdoor temperature. 

The balance point of a structure is the outdoor temperature at which the structure requires no 
heating energy. The x-intercepts of the three regression lines are of interest as they estimate the 
balance point of the AFSD House. All else being equal for the same structure, the outdoor 
temperature at which no dedicated heating energy is required should be the same and so, the x- 
intercepts of all three regression lines should be approximately the same. The x-intercepts for 
the radiant, heat pump, and baseboard systems were 56, 57, and 68.7°F, respectively. The 
proximity of the heat pump and radiant panel x-intercepts is credible because the indoor 
temperature setpoints and setbacks, incidental energy gains, and operation of the house were quite 
similar during operation of each system. The one major difference was sealing of the forced-air 
delivery registers and cold air returns when the radiant system was being operated. This may 
explain the slightly higher balance point of the heat pump regression line. 
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The balance point for the baseboard system is significantly different than either the radiant panel 
or heat pump regression line. There are several factors that could account for the difference: 

1. The AFSD House was unoccupied during the electric baseboard study. Incidental gains 
and losses from occupants' activities (cooking, domestic hot water use, exhaust fan use, 
entering and exiting, etc.) are not reflected in the baseboard data. Additionally, the 
interior conditions of the house during the baseboard study (curtain and blind positions, 
furniture contents, etc.) are not known and could effect the thermal performance of the 
house. 

The thermostat setforward temperature for the electric baseboard study as 4°F higher than 
in the Enerjoy study. The actual indoor temperature was approximately 2°F higher 
(averaging 70.5°F). 

The room-by-room setback schedules for the baseboard study were designed to simulate 
occupancy. How well they actually reflected the routines of the AFSD House occupants 
in the Enerjoy study cannot be determined. 

2. 

3. 

It was not possible to factor these differences out of the present comparison. Accounting for the 
higher setpoints would serve to decrease the difference in comparison to the other two regression 
lines. The extent and direction of the impact of the other factors cannot be determined with the 
information available. For the current comparison, it can only be noted that differences exist and 
the comparison of the baseboard energy consumption to the other systems is limited by these 
differences. 

It is interesting to note that the slopes of the radiant and baseboard system regression lines are 
similar, suggesting similar relationships between energy consumption and outdoor temperature. 
It is not possible to determine the reason for the slope similarity but the room-by-room thermostat 
control and lack of delivery losses for both systems may be at least part of the explanation. 

5.3.2 Translation of Regression Relationships into Expected Energy Savings 

The estimated relationships between energy consumption and outdoor temperature can be used 
to calculate the expected annual heating energy required for the Washington, DC area. Typical 
record year (TRY) data from nearby Andrews Air force Base allows translation of the regression 
lines into the expected average energy consumption for the heating system. Typical record year 
calculation is a method of weighting the individual relationships by outdoor temperatures 
typically encountered during a heating season. Table 4 gives the results of the typical record year 
calculations, 
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Table 4 
Typical Record Year Heating Energy Estimations 

for the Three Heating Systems 

Information: Heating 

The radiant panel heating system demonstrates a projected 33 percent savings in comparison to 
the heat pump for the typical record year. Note should be made here that the different slopes 
of the two regression lines translate into varying savings with varying heating season climate. 
The fact that the radiant regression line is below the heat pump regression line over the entire 
range of outdoor temperatures suggests that the panels would outperform the heat pump, 
regardless of the record year or region in which the house is located. Greater savings would be 
expected in colder climates, less in warmer climates. The 52 percent energy savings estimated 
with the radiant heating system in comparison to the baseboard system must be presented with 
some caution. Different test conditions existed for the radiant panel and baseboard studies and 
the impact of these differences may have an impact on the relative energy savings. The primary 
reason the information on the baseboard system was included was to help demonstrate that any 
efficiency gains with the radiant system are not simply the result of room-by-room zoning. The 
regression results suggest that the efficiency gains with the radiant system result from more than 
just zoning gains alone. 

5.3.3 Qualifying the Energy Savings Demonstrated by the Radiant System 

The seasonal heating cost estimates pertain to the AFSD House occupied by a working couple. 
Significant impact on the operation and consequently the energy consumption of either or both 
heating systems could result from additional occupants. Because the setting forward of 
thermostats is occupant-dependent with the radiant system, more occupants would presumably 
significantly increase energy use. In other words, the energy consumption of an occupant- 
dependent heating system may be more sensitive than the floor-zoned conventional system to 
increases in the number of occupants. On the other hand, the impact of one occupant home 
during daytime hours could have a greater impact on the conventional forced-air system than the 
radiant. With the conventional, forced-air system, an entire zone or zones would be removed 
from daytime setback whereas with the radiant system, an occupant home during the daytime 
may only require the setting forward of certain rooms. While occupation of a 2,200 square foot 

24 This figure does not include any adjustments for differences as discussed in the text. 
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house by one working couple does not represent the median living situation in the United States, 
these circumstances are by no means unusual and the savings demonstrated here are relevant. 
Actual savings in homes with varying numbers of occupants and schedules will result in different 
savings. 

Furthermore, the relevancy of the projected savings with the radiant system is dependent on the 
delivery of acceptable levels of thermal comfort. The overall evaluation of the heating systems 
comparison hinges upon analysis of thermal comfort delivery with the two heating systems. 

5.4 Delivery of Thermal Comfort Comparison 

5.4.1 Assessment of Thermal Comfort Delivery 

Assessment of thermal comfort involved a review of the thermal comfort surveys completed by 
the occupants (see Appendix C). The occupants of the AFSD House were asked to complete a 
short survey whenever they experienced thermal discomfort. By including the exact time of 
survey completion, the responses could be linked to environmental conditions recorded for the 
occupied room. A summary of the survey results are contained in Appendix E. 

It should be noted that the occupants of the AFSD House were new to the region and had little 
experience with radiant panels, heat pumps, or forced-air systems in general. Both occupants 
were accustomed to hydronic baseboard and wood stove heat. 

The following generalizations were made based on review of the surveys and the environmental 
conditions as recorded by the monitoring system. 

1. The set-forward temperature of 68°F for both heating systems was probably at the lower 
margin of thermal comfort for the female occupant of the research home. During the trial 
operation period of both heating systems, the male occupant determined the setback and 
set-forward thermostat settings. Twenty of the 25 surveys completed for some level of 
cold discomfort were completed by the female occupant. Studies have shown that there 
appears to be no relationship between thermal comfort requirements and gender; however, 
substantial variation among individual requirements does exist. 

ASHRAE Standard 55-1992, the thermal comfort standard, includes a graph showing the 
relationship between optimum operative temperature and clothing insulation for typical 
metabolic activity, relative humidity, and air speed. Based on thousands of observations, 
the graph gives the optimum operative temperature range that would satisfy 80 percent 
of all individuals for a given level of clothing insulation. Given the 1.1 clo value of the 
AFSD House occupants, the optimum operative temperature was 69.5 and the lower and 
upper limits satisfying 80 percent of all individuals were 66.5 and 72.5, respectively. 25 
While the set-forward temperature of 68°F is quite reasonable for a clo value of 1.1, 

25 ASHRAE Standard 55-1992, p. 5. These temperatures are for individuals during light, sedentary activity, 
a relative humidity of 50 percent and an air speed less than 0.15 m/s. 
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individual variation certainly allows for the responses of both occupants to the 
temperature setting. 

For both occupants, an equal number of comfort surveys indicating insufficient thermal 
delivery were completed for each heating system. If the setforward temperature of 68°F 
was a bit low for the female occupant, at least the reaction to this setpoint was roughly 
equivalent for both heating systems. Appendix F contains graphs of temperature profiles 
during the operation of each system on a typical winter day. Note the marked differences 
in temperature profiles even as each system provided thermal comfort. These differences 
embody many of the individual issues discussed in this section. 

Half of the comfort surveys indicating insufficient thermal delivery were completed for 
the family room alone. This fact is a combination of the total amount of waking hours 
spent in this room and the fact that the heat loss from this room may have been greater 
than calculated for either heating system. For the forced air system, the distance of the 
room from the first floor thermostat and the room's relative isolation from the remainder 
of the first floor were most likely important factors. For the radiant system, insufficient 
panel density and/or panel location may have combined responsibility. 26 Related to this, 
the temperatures in the family room at the ceiling and floor were, regardless of the 
operating heating system, well below measured floor and ceiling temperatures for the 
master bedroom and dining room. The fact that five of the six surfaces in this room were 
exterior would make any errors in the estimation of the conductive and/or air infiltration 
load in this room critical in the delivery of thermally acceptable conditions. 

Occupants found more opportunity to locate for comfort with the radiant system. 
Although occupant location was not information included on the comfort survey, the 
occupants noted that they found themselves locating in a room according to panel 
location. The generally higher thermal requirements of the female occupant could be 
accommodated by locating more directly beneath a panel and the lower thermal 
requirements of the male occupant were accommodated by locating less directly beneath 
the panel. This pattern was also demonstrated by AFSD House visitors on several 
occasions. One visitor remarked that it was similar to how people might gather around 
a wood stove, except that the location of the panel on the ceiling meant that no one's 
"view" of the heat source was obstructed. This location-dependency of thermal comfort 
delivery can be interpreted as either an advantage or a disadvantage of the radiant system 
depending upon whether occupants can or must locate for comfort in a room during 
recovery from setback. This point will be further discussed in the conclusions and 
recommendations of this report. 

On five occasions, comfort surveys indicating insufficient thermal delivery corresponded 
to periods of radiant panel cycling. On all five occasions, inspection of the recorded 
radiant panel status for the occupied room indicated that a survey was completed just at 
the tail end of an off cycle. On the one hand, this phenomenon suggests that the radiant 

2. 

3. 

4. 

5 

26 Recall that the manufacturer's calculations included an assumed .4 ACH for the AFSD House, substantially 
lower than the measured .7 ACH. 

20 



thermostat is sensing thermal comfort requirements in the proximity of the panel quite 
efficiently. On the other hand, this phenomenon suggests that if thermally acceptable 
conditions are dependent on panel status, cycling as the panels near or achieve set forward 
conditions may be problematic for individuals requiring direct radiation for thermal 
comfort. All five of these surveys were completed by the female occupant of the AFSD 
House, the occupant whose comfort requirements have already been noted as more 
sensitive to the set-forward temperature. 

Four of the five comfort surveys indicating excessive thermal delivery were for the forced 
air system, all four of these for the master bedroom. The only monitored room that had 
doors to isolate the room from the rest of the house was the master bedroom. The 
occupants generally slept with this door closed. With the master bedroom entrance door 
closed, the heat pump thermostat in the upstairs hallway was not receiving feedback from 
the single largest area on the second floor. Subsequently, overshoot in the master 
bedroom was quite common. Forty-three-inch air temperatures could go as high as 78°F 
in the early morning hours as the heat pump was ramping up to meet the morning set 
forward temperature. With occupants dressed and blanketed for overnight setback of 
60°F, 78°F was quite uncomfortable. The problem of interior door position as it relates 
to delivery ducts, returns, and zone thermostats is not an unusual one for conventional 
forced-air systems. 

Overshoot occurrences were often coupled with occupant complaints of dry throats and 
headaches that they attributed to the dryness of the air. It was anticipated that occupants' 
sinus problems would be associated with lower relative humidities with the forced-air 
system than the radiant system, particularly at lower outdoor air temperatures. The 
infiltration of cold, relatively dry air would be greater with the higher infiltration rate 
associated with the ducted forced-air system than the non-ducted radiant. This would be 
particularly true during very cold periods when longer periods of blower operation would 
increase the air infiltration rate associated with the ducted system. In fact, the graph in 
Figure 2 shows little difference in relative humidities for the two systems and 
unexpectedly less difference at colder outside temperatures. More continuous and 
consistent relative humidity measurement may be required to resolve this apparent 
anomaly. Regardless of the numerical results on relative humidity, sinus complaints were 
clearly common with forced-air system operation at cold temperatures and non-existent 
during radiant system operation. It is possible that sinus and respiratory irritation was 
related to some other phenomena, such as air-borne dust or room pressurization, that are 
also correlated to forced-air operation. 

6. 

7. 
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8. The clo value of both occupants’ standard dress may have had an impact on thermal 
comfort assessment of both heating systems. The occupants made an effort to standardize 
the total clo value of day and night time dress. Day attire for both occupants was 
approximated at 1.1 . 27 This clo value is, however, significantly higher than the clo value 
used in most thermal comfort studies with perhaps the most important difference being 
the percent exposed skin surface. The total clo value and relatively low percent exposed 
skin surface may have made occupants less sensitive to air temperature reduction with the 
radiant system and localized drafts near forced-air delivery registers. The occupants 
commented that on isolated occasions when substantial skin surface was exposed, walking 
from room to room during radiant system operation felt quite cool. The reduced air 
temperature associated with the cooling effect of apparent air speed when walking may 
have created the equivalent of a draft. Similar instances were described for the forced-air 
system operation, particularly in the bathrooms, where the location of delivery registers 
near the showers made lower total clo values sometimes unavoidable. Although the 
occupants’ dress may have reduced their sensitivity to certain aspects of both heating 
systems operation, the fact that dress was standardized for both systems reduced the 
impact of this phenomenon. 

27 Typical dress for both occupants included heavy trousers or sweatpants, turtleneck, sweater, wool socks or 
leather-bottomed and lined slippers, and undergarments. The female occupant generally wore thin long 
underwear bottoms, as well. As recent arrivals to the area from rural New England, the occupants dressed as 
they have been accustomed. 
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At the end of the testing period, the two occupants of the AFSD House were asked which heating 
system they preferred and why. Their preferences were solicited before any information on the 
comparative energy consumption of the two systems was available. Both occupants stated their 
preference for the radiant heating system, for the following reasons: 

1 .  Room-by-room control and flexibility: Both occupants liked being able to control the 
temperature in the room rather than have a hallway thermostat dictate the conditions. An 
activity such as exercising by one occupant in one room did not require changing the 
environmental conditions of an entire floor. The radiant system accommodated 
occupants' varying thermal requirements better than did the conventional, forced-air 
system. 

Silent and still operation: Both occupants preferred the lack of air movement and fan 
operation noise. 

Sinus comfort: Particularly during sleeping hours, the occupants preferred the conditions 
of radiant panel operation to those of forced-air operation. 

2. 

3. 

The primary inconvenience cited in the operation of the radiant system was the need to anticipate 
the setting forward of room thermostats to achieve general room comfort as opposed to more 
local thermal comfort conditions. While the occupants felt that acceptable thermal conditions 
could be achieved in approximately 10 to 15 minutes if activity was restricted to panel proximity, 
total room comfort required approximately 30 to 45 minutes. For example, the master bedroom 
thermostat was set forward by the earlier riser in the morning so that thermally acceptable, 
whole-room, conditions would exist for the other occupant upon rising. 

The occupants also felt that it was more difficult to remember to setback the thermostat upon 
exiting then it was to set forward upon entering a room. There was no "prompt" to set back the 
thermostat as there is for lighting when exiting a room. 

The input from actual occupants was invaluable in assessing the operation and delivery of 
thermal comfort by the two heating systems. Their input goes beyond the capabilities of 
measured environmental factors. Their experiences are by nature, however, individual and 
subjective. Their specific thermal requirements and preferences are important but must be viewed 
as limited. The recorded environmental parameters from the three thermal comfort stations can 
be used to broaden the discussion of thermal comfort delivery. 

5.4.2 Sufficiency of Installed Capacity 

Assessment of thermal comfort delivery is in part determined by the ability of each heating 
system to meet heating needs down to design conditions. The installed capacity of a heating 
system must be sufficient to meet the whole-house requirements for maintenance of acceptable 
thermal conditions down to an outdoor temperature extreme typical of the region. Design 
condition for the area where the AFSD House is 13°F. 

The 1993-94 heating season for the mid-Atlantic region of the United States was unseasonably 
cold, particularly in mid-January and early February. Outdoor temperatures approaching and 
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exceeding design conditions were common during parts of January and February. Data for two 
full days of outdoor daily average temperatures below 10°F were available for comparing the 
performance of the radiant and forced-air heating systems. Of the three monitored rooms, the 
family room was selected for discussion because the heat loss from this room placed the greatest 
load on both heating systems. 

Figure 3 shows the operative temperature recorded in the family room during radiant system 
operation for the entire 24-hour period on January 15, 1994. Outdoor temperatures were at or 
below design conditions for the entire 24-hour period. The temperature started at 12°F and 
worked its way down to 0°F as the day progressed. This means that the AFSD House was 
experiencing outdoor conditions primarily below design conditions for the entire 24-hour period. 

The pattern of family room operative temperatures suggested that the installed capacity was 
sufficient to at least maintain the setback temperature of 60°F, even at temperatures approaching 
0°F. The indoor/outdoor temperature differential at 0°F was 60°F, 5°F greater than the 
differential used for the manufacturer's installed capacity calculations. 

It is more difficult to determine if the installed capacity was sufficient for recovery from setback. 
The setpoint of the family room thermostat is known only for the early morning and late night 
hours for this 24-hour period. These periods corresponded to night time setbacks of 60°F. On 
most days, inspection of the status channel for a monitored room in conjunction with the pattern 
of the operative temperature provided the information necessary to determine when monitored 
rooms were occupied. For this day, however, inspection of the status channel revealed that the 
panels in the family room were energized without interruption for the entire 24-hour period. 
Little can be determined regarding family room occupancy and day time thermostat setting from 
the database. Although the operative temperature peaks of 65°F suggest some intermittent 
occupancy, the fact that this day was a weekend day meant that nothing could be determined 
regarding occupancy. 28 

28 The location of the operative globe near the room perimeter at this point in the study made interpretation 
of this data more difficult. Tests performed on the effect of globe location discussed later in this report suggest 
that perimeter operative temperatures of 65°F could correspond to operative temperatures closer to 68°F in the 
central portion of the room. 
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Inspection of data for this 24-hour period for the other two monitored rooms indicated frequent 
panel cycling, even late in the evening when outdoor temperatures were well below design 
conditions. This suggested that the installed panel capacity in these rooms was more than 
sufficient to meet design conditions under steady state conditions. Review of cold days above 
design conditions (average daily outdoor temperatures in the 20’s) revealed no difficulties in any 
of the monitored rooms’ abilities to recover from setback. Although the information available 
does not prove the sufficiency of installed capacity, there are strong indications to suggest that 
the installed capacity was adequate for design conditions and day and night setbacks. 

Figure 4 shows the graph of operative temperature patterns for the family room during forced-air 
system operation for a day with an average outdoor temperature below design conditions and 
very similar to the average outdoor temperature in Figure 2. Because the forced-air system 
followed a schedule and it was known that this 24-hour period represents a weekend day, the 
thermostat settings were known. The night time setback was 60°F and the day time setting was 
68°F. 

The night setback of 60°F was not maintained in the family room. This period did, however, 
correspond to outdoor temperatures well below the design condition of 13°F. The temperature 
pattern of peaks and valleys from 9 a.m. to 5 p.m. suggests problems with maintenance of the 
68°F set forward temperature. The cycling associated with the pattern may be more a problem 
of thermostatic control than sufficiency of installed capacity. On both floors, the forced-air 
thermostats were located approximately halfway down the hallways. Temperature feedback from 
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a room isolated and distant from the thermostat can be a problem with floor-zoned heating 
systems. 

Inspection of the other two monitored rooms for this 24-hour period revealed better maintenance 
of setback and setforward temperatures. The patterns of operative temperature in the dining room 
and master bedroom suggest that the installed capacity of the forced-air system was sufficient. 

Proving the sufficiency of the installed capacity for the forced-air system was not the point of 
this comparison--the sizing criteria for conventional heating systems are well established. Fast- 
acting, radiant panel sizing criteria are an issue because the undersizing of the radiant system is 
so dramatic compared to the sizing of conventional systems. The radiant system’s performance 
down to and below design conditions supports the methodology for sizing that the manufacturer 
and Kansas State modeling employed for this installation, at least for steady-state conditions. 
The information available suggested that the installed capacity was adequate for recovery, as 
well, but more specific investigation of this phenomenon may be required. 

Calculating the heat loss of rooms and entire structures and subsequently establishing installed 
capacity is based on assumptions and often judgments by HVAC contractors. Sizing a heating 
system to meet the most severe possible weather for a location is clearly not economical. 29 The 
calculations and methodology of either the manufacturer’s or the Kansas State are certainly 

29 ASHRAE, 1993 ASHRAE Handbook: Fundamentals, 1993. 
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within the proper range. The significantly reduced installed capacity of the radiant system by 
either method of calculation appears appropriate to meet assumed design conditions given the 
evidence from this field study. The manufacturer's significant reduction in installed capacity with 
non-mechanical radiant panels operating at lower average indoor air temperatures is credible. 

5.5 

Six issues regarding the performance of ceiling radiant heat were prominent in the literature 
review for this case study that can be at least partially addressed with results from the field 
research. 

5.5.1 Localized versus Room- Wide Comfort Conditions During Recovery from Setback 

It has been mentioned earlier in this report that the original location of the operative temperature 
globes was relatively near the room perimeter. While location of the air temperature sensors near 
the room's perimeter appeared to have little impact on their readings, there was clearly significant 
impact on the globe readings depending on their location with respect to the radiant panels. 

Figure 5 demonstrates the impact of globe location on operative sensor readings. In Figure 5, 
the four curves correspond to the readings from four operative globes located directly underneath, 
2 feet, 4 feet, and 6 feet to the side of a 2-foot by 8-foot radiant panel, all globes hanging 43 
inches from the floor. The location of the four globe thermometers in 2-foot increments away 
from the 2-foot by 8-foot ceiling radiant panel was a method of estimating the effects of viewing 
angle between the radiant heat source and occupants. All of the globe sensors started at 
approximately the same temperature of 60.5°F. This is equivalent to the recorded ambient air 
temperature at the start of the test, a condition to be expected when the room has been at a 
steady-state setback of 60°F. 

As soon as the panel was energized, the recorded temperatures of the operative-estimating globes 
began to diverge. The increase in operative temperature is clearly proportional to the viewing 
angle with respect to the energized panel. This divergence is an indication of the impact that 
location of occupants with respect to the panel could have on thermal comfort conditions during 
panel recovery. Care must be taken in interpreting the rate of rise of all four sensors because 
of the problem regarding the lagged response time of 6-inch copper globes, to be discussed in 
the following section. After operation of the panels for 1 hour 24 minutes, however, the 
operative temperature difference between the globe directly underneath the panel and the globe 
located 6 feet away was almost 5°F. And, although the globe temperature readings had not quite 
leveled off after 1 hour 24 minutes, the curves appear to be very close to leveling off. This 
significant differential can be speculated to only decrease as the ambient air temperature 
continues to rise and the room begins to approach steady-state conditions, conditions under which 
the 43-inch globe and air temperature sensor would become roughly equivalent. During the 1 
hour 24 minute test period, the 43-inch ambient air temperature rose from 60.2°F to 61.0°F. 

The specific conditions existing in the dining room where the globe location test was performed 
are important to consider in interpreting Figure 5. Refer to the AFSD House first floor schematic 
in Appendix B for the following discussion: 

Issues Discussed by the Literature Review 
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1. 

2. 

Only a ½-height, ¾-length partition defines the living and dining room spaces. 

Only a %-length counter and kitchen cabinet wall defines the dining room and kitchen 
spaces. 

Although the 2-foot by 8-foot dining room panel is located within the specifications 
outlined by the panel manufacturer, the 2-foot by 8-foot living room panel is located on 
the end of the living room away from the dining room and 90º rotated from the 
manufacturer's recommended location. A ceiling fan and sprinkler head prevented 
location of the living room panel in the specified location. 

The living room 2-foot by 8-foot panel was operated by a separate thermostat whereas 
the kitchen and dining room panels were on the same thermostat. 

3. 

4. 

These conditions are important because the orientation of panels and thermostatic control affected 
the globe readings in this test and therefore are indications of the impact panel location and room 
geometry have on thermal comfort, particularly during setback recovery. First, the globes with 
increasing distance from the dining room panel did not have the benefit of reflectivity of full 
height walls between the kitchen and living room. In a sense, the lack of containing full height 
walls between the kitchen and dining room and living room and dining room allowed radiant heat 
from the dining room panel to "escape" beyond the dining room's dimensions. Second, the 
globes did not "see" the living room panel as they would have if the living room panel was 
located in the center of the living room as the manufacturer prescribed. Third, the open nature 
of the kitchen, dining, and living room spaces probably resulted in a slower rise in the air 
temperature during recovery, and therefore delayed its contribution to operative temperature rise. 
Fourth, because the dining and living rooms were on separate thermostats, the living room panel 
was not energized during the globe location test. (A better design may have been for the living 
room and dining room panels to be on the same thermostat and the living room panel centrally 
located because the open nature of the living/dining room spaces makes them more a common 
space than individual rooms). 

The globe location test and the above discussion on room geometry indicate the importance of 
panel location and thermostatic control with fast-acting, ceiling radiant panels. Because provision 
of thermal comfort during recovery is so dependent on panel location and distribution, panel 
location and thermostatic control must be carefully determined, particularly if the system is going 
to be used under setback conditions. 

5.5.2 Time Required for Comfort Conditions During Recovery from Setback 

Research by Berglund of the Pierce Foundation has shown that occupants of a radiantly heated 
enclosure accept cool spaces upon entry as long as the radiant system can quickly raise the 
operative temperature. 30 "Quickly" in the case of radiant panels in the Berglund study meant 
acceptance at the 92 percent level after 15 minutes. This information corresponds to the 

30 Berglund, L., R. Rascati, and M. L. Markel, "Radiant Heating and Control for Comfort During Transient 
Conditions," ASHRAE Transactions, Part 2: 765-775, 1982. 
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experiences of the AFSD House occupants but does not correspond to the data presented in 
Figure 5. 

Note that even the globe directly underneath the panel does not reach an operative temperature 
of 68°F from a setback of approximately 60°F until approximately 45 minutes after the panel was 
energized. This is a factor of three greater than the rate demonstrated in the Berglund study. 
There are several possible explanations for this discrepancy. 

First, the enclosure for the Berglund test was a room only 8 feet by 8 feet and supplied with four 
4-foot by 4-foot radiant ceiling panels. The AFSD House dining room had ¼ of the area of 
radiant panel installed (one 2 foot by 8 foot), and the dining room was 12 feet 4 inches by 13 
feet 4 inches, an area over 2.5 times greater than the test chamber in the Berglund study. Room 
dimensions and aspects of radiant and reflective surfaces can have a significant impact on the 
delivery of thermal comfort. 

Second, in the Berglund test, the ambient air temperature was raised by a separate convective 
heating system at a rate of 6.3ºF an hour. In the test shown in Figure 4, the estimated ambient 
air temperature rise was at a rate of approximately 1°F per hour. Because the ambient air 
temperature is one of the primary determinants of the operative temperature, differential rates of 
ambient air temperature rise would have a significant impact on the rate of operative temperature 
rise, and hence, thermal comfort. 
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Third, the 6-inch copper globe is known to have an "undesirable [sic] high time constant." 31 
In most monitoring situations, the lag time in 6-inch copper globe response is not critical because 
the operative temperature rise when testing convective heating systems is not rapid. With fast- 
acting radiant panels, however, a 15 minute thermal lag in the response of the operative globe 
can have substantial impact on the assessment of thermal comfort delivery, particularly in periods 
of temperature recovery. Although experts in the field of heat transfer agree that the 6-inch 
copper globe does demonstrate lag in estimating operative temperature, only estimates of the lag 
time exist and no specific references quantifying lag time could be obtained. It is clear that 
development of a more efficient and rapidly responding operative temperature sensor will be 
required to quantitatively assess thermal comfort delivery with fast-acting radiant systems, 
particularly during the early stages of temperature setback recovery. 

Quantitative assessment of thermal comfort delivery during periods of radiant panel setback 
recovery was not possible with the monitoring equipment currently available. Occupants of the 
AFSD House generally felt that thermal comfort was acceptable in close panel proximity in 
approximately 15 minutes. 

5.5.3 Time Duration of Lower Air Temperature with Respect to Operative Temperature 

Lower air temperature in conjunction with an elevated mean radiant temperature is central to the 
Enerjoy claims of energy savings and maintained thermal comfort. Under steady-state conditions 
and radiant panel operation, the operative and air temperature are approximately equal. Under 
transient conditions, as the setpoint of the thermostat is changed from the setback to setforward 
temperature, for some period of time the air temperature remains at a lower temperature than the 
newly elevated operative temperature. Energy savings from lower air temperature are dependent 
on the length of time it takes for the portion of the total heat transfer that is convective in the 
room to reach an equilibrium with radiant heat transfer. An heating element that is radiating a 
high portion of its total heat output to a room filled with building materials that have high 
emissivities and low convective coefficients provides the environment for a sustained lower air 
temperature. The following factors also influence the length of time a lower air temperature will 
endure after the thermostat is set forward: 

1. Outdoor temperature - As illustrated in Figure 6,  the duration of a lower air temperature 
was longer at lower outdoor temperatures. A 43-inch air temperature of 68°F was 
achieved after approximately 2 hours at an average outdoor temperature of 37.7°F. At 
an average outdoor temperature of 27.4°F, ten degrees colder, the air temperature 
reduction was maintained for more than three hours. The rate of air infiltration is 
dependent in large part on the indoor/outdoor temperature differential. The larger the 
differential, the higher the air infiltration rate. The higher the air infiltration rate, the 
greater the entry of cold air into the room, and the longer the air temperature reduction 
period. 

Natural air infiltration rate - At the same outdoor temperature, rooms or structures with 
higher natural air infiltration rates will take longer to reach equilibrium or steady-state. 

2. 

31 ASHRAE, 1993 ASHRAE Handbook: Fundamentals, 1993. 
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Because air is the medium of convective heat transfer, higher rates of replacement of the 
space’s air content will slow the air temperature rise and the time required to reach 
steady-state conditions. 

Room geometry - As discussed in a previous section, the degree to which any room is 
isolated from free air exchange with other parts of the house will have an impact on the 
rate of ambient air temperature rise in the room. 

3. 

Figure 6 shows the effects of outdoor temperature for a room with five exterior surfaces. The 
natural air infiltration rate of this particular room is relatively high and must be considered in an 
evaluation of the duration of lower air temperature under transient conditions. Review of 43-inch 
air temperature rise to steady-state conditions for other monitored rooms revealed that air 
temperature rise under transient conditions was related to outdoor temperature but durations of 
2 to 4 hours were not unusual. Time periods of this length provide a significant opportunity for 
any subsequent energy savings. Consideration must also be given to the fact that recovery from 
setback (transient conditions) occurs during occupied periods. Occupants’ activities (opening of 
exterior doors, exhaust fan operation, etc.) raise the air change rate and can serve to increase the 
duration of lower air temperatures. 

5.5.4 Sustained thermal comfort and radiant panel cycling 

Panel cycling and thermal comfort were discussed as part of the review of thermal comfort 
surveys completed by AFSD House occupants. For a number of thermal comfort surveys, 
discomfort was associated with a period of panel cycling. In general, panel cycling occurred 
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during or just prior to steady-state conditions. This situation is graphically portrayed in Figure 
7. This graph represents a time period of continued occupation of the dining room on a weekend 
day. The thermostat had been set forward for several hours prior to the time period portrayed. 
Note that the 43-inch air temperature, while lower than the operative temperature, was 
approaching 68°F. The globe operative temperature was significantly above the standard set 
forward temperature of 68°F but acceptable thermal conditions were occurring until the time 
corresponding to the sharp drop in the operative temperature. The sharp drop in operative 
temperature corresponds to a period of panel cycling, as indicated by review of the panel status 
records. While the operative temperature never dropped below 69ºF, two individuals indicated 
thermal discomfort during the time period corresponding to the sharp drop in operative 
temperature. Both individuals registering thermal discomfort were located directly beneath the 
2-foot by 8-foot radiant panel. Two other room occupants not located directly beneath the panel 
did not register thermal discomfort. 

The thermal comfort surveys completed that corresponded to periods of panel cycling and the 
graph in Figure 7 illustrate that panel cycling can be a source of thermal discomfort for occupants 
whom are located in close proximity to the radiant panel(s). If the occupant directly beneath the 
panel found the thermal environment acceptable prior to the panel cycling off, the sharp drop in 
operative temperature while the panel cycle off resulted in thermal discomfort. Occupants not 
directly underneath the radiant panel experienced less of a drop in operative temperature and 
consequently were less likely to find the panel cycling thermally unacceptable. 
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It is interesting to note that panel cycling during setback can be quite frequent and be 
accompanied by rapid changes in the operative temperature directly underneath a radiant panel. 
This situation was a common occurrence in the master bedroom--occupants were located directly 
beneath the 2-foot by 8-foot panel during setback periods, periods for which inspection of the 
database revealed frequent panel cycling, on for approximately 8 minutes, off for approximately 
12 minutes. Inspection of air and operative temperatures during setback revealed air temperatures 
around 62°F with the operative temperature rising and falling from approximately 65°F to 63.5°F. 
Thermal discomfort complaints, however, did not correspond to panel cycling during setback 
periods. Thermal discomfort may have been less likely under these circumstances for one or a 
combination of the following reasons: 

The difference between air and both operative and mean radiant temperatures was 
significantly less during setback. 

Substantially elevated clo values associated with bedding reduced sensitivity to rising and 
falling operative temperatures. 

Sleeping reduced the sensitivity of individuals to temperature swings or the likelihood of 
completion of a survey. 

5.5.5 Vertical Air Temperature Difference 

Vertical air temperature difference can result from less dense, warmer air rising to the ceiling and 
more dense, cooler air falling to floor level. Vertical air temperature difference can be important 
in terms of its effect on thermal comfort and increased heat loss. 32 ASHRAE Standard 55-92 
sets a maximum vertical air temperature difference for thermal comfort of 5°F differential from 
4 inches to 67 inches off the floor. 33 

Figure 8 shows three examples of vertical air temperature difference, two corresponding to 
periods of heat pump operation and one corresponding to a period of radiant panel operation. 
The vertical axis represents the difference between air temperatures measured at 4 inches off the 
floor and 4 inches off the ceiling. The three lines are all generated from data for the dining room 
and were selected because they represented close to the maximum stratification generated by 
either heating system. (With unconditioned space above both the master bedroom and family 
room, vertical air temperature difference was less pronounced in these two rooms than in the 
dining room.) 

32 Higher temperatures at the ceiling can result in a higher indoor/outdoor temperature differential at the 
ceiling, increasing conductive losses. Additionally, higher air infiltration can result from stack effect, even 
within a single-story. 

33 The ceiling air temperature measurement is significantly different than a 67-inch off-the-floor measurement 
specified in the ASHRAE standard and so quantitative evaluation of compliance with this standard was, strictly 
speaking, not possible. 
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The large peaks in the "heat-pump-in-recovery" line were thought to coincide with cycling of the 
auxiliary strip heat as the predictive, programmable thermostat brings the first floor temperature 
up to the setpoint of 68°F for occupancy on a very cold day. During ramping up periods on very 
cold days, the blower ran continuously and the air temperature of the heated air as it left the floor 
registers varied significantly as the auxiliary strip heat cycled off and on. It is customary for the 
delivery temperature at registers to be significantly higher when the backup strip heat is on and 
supplementing heat pump capacity. Note that the vertical air temperature difference from floor 
to ceiling approaches 6.5ºF during recovery. In steady-state, the forced-air system demonstrates 
much less stratification and the trend over time is less rather than more stratification, just the 
opposite of the stratification demonstrated during the recovery period. The radiant system, on 
the other hand, behaved in an opposite manner. The vertical air temperature difference was 
greater during steady-state conditions than during recovery. 34 In comparing the two heating 
systems, the vertical air temperature difference for the radiant system in steady-state was less 
than the vertical air temperature difference of the heat pump in recovery. 

The large differences in vertical air temperature difference for the two heating systems was 
probably the result of different phenomena. With the forced-air system blower on continuously 
during recovery, periods of elevated delivery temperatures as the strip heat cycled on caused the 
peaks and the mixing of this warmer air as the strip heat cycled off represents the valleys. With 
the radiant system, sustained periods of energized panels and little active air movement resulted 

34 The vertical air temperature difference during recovery was not included in Figure 8 because the difference 
was negligible. 
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in some natural or passive vertical air temperature difference. It is possible as well that the 
convective coefficient of the panel while at operating temperatures of 150 to 170°F creates a thin 
layer of warmer ceiling air that remains stratified since the heating system involves no active 
movement of air. Regardless of the exact mechanism the radiant heating system demonstrated 
less vertical air temperature difference than the operating forced-air system and did not exceed 
limits of vertical air temperature difference as set forth in ASHRAE Standard 55-92. The greater 
vertical air temperature difference with the forced-air system supports the fact that hot air, not 
heat, rises. A system heating air is more prone to vertical air temperature difference than a 
radiant system which only heats the air indirectly and over extended periods of time. 

5.5.6 Computer Modeling Analysis of Thermal Comfort Delivery with Radiant Heating 

Research is ongoing in the development of computer models capable of more accurately 
representing the actual heat transfer dynamics in complex structures such as homes. One such 
model has been developed with support from ASHRAE by Drs. Jones and Chapman of the 
Kansas State University’s Institute for Environmental Research. Their model has the capability 
to predict local thermal comfort conditions for residential structures heated with a ceiling radiant 
system. It is only recently that computer modeling has gained the capability of incorporating all 
three forms of heat transfer. This new capability allows comparison of empirical field results on 
thermal comfort delivery by radiant heating systems to computer modelling results. 

Comparison of the field data from the AHTP Enerjoy case study to computer modeling results 
from the Kansas State Comfort and Building Analysis Program would provide important 
information on the modeling validity and field testing protocols for radiant heating. Time and 
budget constraints prevented inclusion of any comparison in this report. A database exists, 
however, should resources be available for this comparison. 

6.0 SUMMARY OF FINDINGS 

The objectives of Task 2 were to assess the comparative airtightness, installed capacity, energy 
consumption, and delivery of thermal comfort by the fast-acting, ceiling radiant and forced-air 
heat pump heating systems. Comparison to an electric baseboard system was to be included 
where possible. In addition, specific unresolved issues regarding performance of the ceiling 
radiant heat in residential structures were to be discussed. 

6.1 Air Infiltration 

The literature review provided consistent evidence of the reduced air infiltration rates with non- 
ducted heating systems in comparison to forced-air, ducted systems. The results of the two 
blower door tests performed on the AFSD House were in accordance with this evidence. The 
AFSD House demonstrated a 12.5 percent reduction in the natural air infiltration rate when in the 
radiant mode as compared to the forced-air mode. Previous research has shown that air 
infiltration during blower operation of a ducted system can double the air infiltration rate. The 
blower door tests performed at the AFSD House emphasized the validity and importance of 
effectively eliminating the duct system during operation of the radiant system. The sealing of 
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all ducts and returns during radiant system operation served to increase the validity of the two- 
system comparison. 

6.2 Energy Consumption 

The radiant heating system demonstrated significantly better energy performance than either the 
heat pump or baseboard systems. Translation of the three energy consumption/outdoor 
temperature relationships into expected energy savings for a given locale was accomplished with 
typical record year data from Andrews Air Force Base. Thirty-three percent savings could be 
expected in the AFSD House by operating the radiant system instead of the heat pump and 52 
percent savings could be expected by radiant system operation in place of the electric baseboard 
system, The significantly better performance of the radiant system in comparison to the 
baseboard system suggests that savings with the radiant system are not solely due to efficiency 
gains associated with room-by-room zoning and the absence of delivery losses associated with 
centralized, forced-air systems. 

It is important to note that the comparative energy performance of the three systems is specific 
to the AFSD House and its occupancy by a working couple. Savings in other homes with 
varying numbers of occupants and their daily routines could have significant impact on the 
comparative energy performance of the three heating systems. 

6.3 Installed Capacity 

The installed capacities of the radiant, heat pump, and electric baseboard systems support the 
radiant panel manufacturer’s claim of significantly reduced installed capacity for the radiant 
system. The actual installed capacity of the radiant system was 40 percent less than Right-J 
recommendations for steady-state system operation, 50 percent less than the installed capacity 
of the heat pump system, and 60 percent less than the electric baseboard installation. 35 Review 
of data for outdoor conditions to and below design conditions (13°F) revealed that the installed 
capacity of the radiant system was adequate to maintain set indoor temperatures. There was 
insufficient information to determine definitively if the installed capacity of the radiant system 
was sufficient in the family room. Accurate information on the specific heat loss characteristics 
of a structure at the room-by-room level may be required to reduce the installed capacity of the 
radiant system to the extent presented in the AFSD House. 

6.4 Thermal Comfort 

Review of the thermal comfort surveys completed by the two AFSD House occupants suggested 
that comparable levels of thermal comfort were provided by the radiant and heat pump systems. 
Occupants found that their location in relation to the panels influenced thermal comfort. During 
recovery form setback, location for thermal comfort may be required. During steady-state 
conditions, the effect that viewing angle had on thermal comfort permitted individuals with 
varying thermal requirements to locate in relation to the panel for comfort. Localized thermal 
comfort was found to be provided by the radiant system within 10 to 15 minutes during recovery 

35 Both the heat pump and electric baseboard installed capacities were designed for day and night setback. 
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and room-wide comfort in approximately 45 minutes. Both occupants found these delivery times 
acceptable, although the room-wide provision of comfort during recovery required anticipation 
of this room’s use. The occupants, prior to any knowledge of the two systems’ energy 
performance, indicated their preference for the radiant system because of greater flexibility and 
control on a room to room basis, silent operation, and fewer problems with sinus discomfort. 
Their preferences were based less on thermal comfort criteria than on features associated with 
system operation. 

The comfort analysis in this report is limited to the evaluation of subjective input from two 
occupants of the AFSD House. While the evaluation of completed thermal comfort surveys 
provided valuable information on thermal comfort, their specific thermal requirements, standards 
of dress, and backgrounds cannot be ignored as limiting factors in the thermal comfort analysis. 

Quantitative analysis, such as PMV analysis or comparison to computer modeling results, would 
provide an additional basis for thermal comfort evaluation. Quantitative analysis would be 
complicated by the lagged response time of currently available operative or mean radiant sensors 
and the present inability of computer models to analyze thermal comfort delivery with radiant 
heating systems under transient conditions. 

6.5 Specific Performance Characteristics of Radiant Heating as Discussed in the 
Literature 

Research by Berglund has demonstrated that occupants can find it thermally acceptable for a 
room to be cool upon entry as long as the operative temperature is rapidly raised; “rapidly” being 
defined as approximately 15 minutes. This corresponds to the experience of the AFSD House 
occupants in the Enerjoy case study so long as the occupant’s activity permits location in close 
proximity to a radiant panel. Room-wide thermal acceptability may require as long as 45 
minutes. During recovery periods, the operative temperature varied depending on occupant 
location with respect to the radiant panel. 

Lower air temperatures as the operative temperature rises rapidly is central to energy savings 
claims with fast-acting radiant heat. The rate of rise in ambient air temperature in the monitored 
rooms of the AFSD House suggested reduced ambient air temperatures for two to four hours, 
with prevailing outdoor conditions having a significant impact on the duration of reduced air 
temperatures. The specific geometry and heat loss characteristics of the room also had a 
significant impact on duration. 

During some periods of extended panel operation, individuals located directly beneath a radiant 
panel registered thermal discomfort when a panel cycled off. Although the individual found the 
environmental conditions acceptable while the panels was energized, the rapid and sharp drop in 
operative temperature associated with the panel cycling off caused thermal discomfort. Thermal 
discomfort due to panel cycling was only registered by individuals located beneath a radiant 
panel. 

The degree of vertical air temperature difference associated with any heating system is important 
in terms of thermal comfort and conductive heat loss. The ASHRAE thermal comfort standard 
sets a maximum difference between floor and head-high air temperatures. Stratification can 
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create a stack effect associated with increased heat loss. Under recovery or steady-state the 
vertical air temperature difference associated with radiant heating system operation in the AFSD 
House was found not to exceed 4°F. This degree of vertical air temperature difference is within 
the limits set by the ASHRAE 55-92 thermal comfort standard and less than the degree of 
vertical air temperature difference identified during some periods of forced-air system operation. 

7.0 CONCLUSIONS AND RECOMMENDATIONS 

In a head-to-head comparison with a conventional forced-air system, the surface-mounted, ceiling 
radiant heat system delivered generally comparable levels of thermal comfort and substantial 
energy savings, The sources of energy savings as described by the manufacturer--reduced 
parasitic losses, room zoning, quick recovery from setback, and lower ambient air temperature 
during recovery--combined to yield the energy savings. The specific number of occupants and 
their routines in the AFSD House were important elements in the evaluation of thermal comfort 
and the magnitude of the energy savings associated with the radiant system. 

All-electric heating systems cannot be automatically dismissed as energy-inefficient. Electricity 
is simply a power source. Comparison of heating systems’ energy performance should focus on 
the efficiency with which acceptable levels of heating comfort are delivered within actual 
structures, not ratings given to mechanical power plants in laboratory tests. The efficiency of any 
heating plant is a function of its mechanical and delivery system. The room-by-room controls, 
rapid recovery from setback, and lower ambient air temperature associated with radiant, surface- 
mounted ceiling panels provided the opportunity for substantial energy savings. 

Because operation of this radiant system depended so much on occupancy, energy savings and 
receptivity of households to radiant system operation can be expected to vary. The response of 
the average household, including children, to thermostats that require operation each time a room 
is entered or exited, ten to fifteen minute lags in the development of localized thermal comfort, 
and 45 minute lags in room-wide thermally acceptable conditions may be quite different than the 
response of the occupants in this study. On the other hand, the magnitude of the energy savings, 
experienced at the AFSD House indicates that savings are obtainable for a wide range of 
households. The flexibility and degree of control with the radiant system will be attractive to 
many households. Also, both the dramatically reduced installed capacity and zoning setback has 
implications for many capacity-stressed utilities. 

This case study provided insight on several thermal comfort issues specific to surface-mounted 
radiant ceiling systems. The results of this study indicate that ambient air temperatures can 
remain lower for significant periods of time while thermal comfort is achieved by elevated mean 
radiant temperatures. Localized thermal comfort can be achieved in an acceptable period of time 
during recovery from setback while room-wide thermal comfort requires some anticipation of 
occupation. Vertical air temperature differences were not a problem for the Enerjoy panels in 
the AFSD House. Panel cycling can be a source of thermal discomfort, depending on the 
occupants relationship to panel location. Significant variation in comfort conditions can result 
from occupant location with respect to panel location. 
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The potential for thermal discomfort associated with panel cycling, unacceptable lead times for 
room occupation, and panel location can be readily mitigated or eliminated by more sophisticated 
thermostatic control and careful panel placement and distribution. These local thermal comfort 
issues were considered to be minor, requiring only adjustments to the current Enerjoy radiant 
system. Specific recommendations regarding panel cycling, location, and distribution are made 
at the end of this section. 

Although this comparative assessment of the radiant and a conventional, forced-air system 
focused on heating energy consumption, thermal comfort, and system operation, there are 
certainly other valid measures to be included in a broader assessment. Energy consumption 
efficiency can be considered a necessary but not sufficient element in overall system efficiency. 
Other measures of system efficiency not included in this analysis are: 

installed cost 

maintenance costs 

life cycle 

The fact that the radiant panels do not involve a mechanical or delivery system would certainly 
have significant impact on both the maintenance and life cycle cost of the radiant system. 

The substantial energy savings potential demonstrated by the Enerjoy radiant heating system 
suggest further study is warranted to assist Enerjoy in commercialization as an energy-efficient 
technology. 

Develop total installed and life-cycle cost analysis - Total installed and life-cycle cost 
comparisons of the Enerjoy radiant system and other heating strategies would provide a 
broader perspective for the home owner on the long-term benefits of various heating 
strategies. 

Explore specific markets - Three specific features of the Enerjoy system give it a distinct 
advantage over other heating strategies--sinus comfort, quick recovery with reduced 
installed capacity, and non-ducted operation. Hospitals, nursing homes, and housing for 
the growing number of individuals who are hypersensitive to air-borne allergens are 
markets inclined to highly value greater sinus comfort and reduced air movement. 
Vacation homes or homes heated by wood stoves that require a backup system should 
value the quick recovery from setback of the Enerjoy system. Areas of the U.S. and 
Canada where central air-conditioning is not prevalent forfeit nothing in year round 
comfort with a non-ducted heating system. 

Identify Enerjoy-compatible ductless and ducted air-conditioning systems - One advantage 
to centralized, forced-air systems is their utility in terms of both heating and cooling. The 
nationwide trend, regardless of region, is an increase in the installation of central air- 
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conditioning systems in new homes. 36 Over 78 percent of new homes in 1993 had 
central air-conditioning and this included 54 percent for the Northeast. If thermal comfort 
is defined by households as including conditioned air during both the heating and cooling 
season, then this requirement dictates that provisions for cooling be an integral part of 
year-round evaluation of systems that condition interior spaces. 

Ductless air-conditioning and systems with all air-handling and delivery runs inside the 
conditioned space are being developed and promoted because of the problems associated 
with duct losses and with locating delivery registers appropriately for both heating and 
cooling, The Enerjoy system would be well-suited for use with either of these systems. 

Analyze hourly heating demand of Enerjoy and heat pump systems - Utilities are 
interested in heating strategies that either reduce total demand or better distribute power 
demand. The significantly reduced installed capacity of the Enerjoy system, if coupled 
with more evenly distributed power demand would make promotion of the fast-acting 
radiant panel systems an attractive option for electric utilities. 

The results of the Task 2 field test led to the following additional recommendations: 

1. The sensitivity of the radiant system's under-sizing to the exact extent and distribution 
of heat losses in a structure indicates that reasonably accurate characterization of the 
building's heat loss is required prior to installation. 

The sensitivity of thermal comfort conditions to the location of both occupants and panels, 
particularly during periods of recovery, indicates that: 

2. 

the square area of panels installed be held constant while increasing the number 
of panels in order to provide greater thermal comfort to a broader area of a room, 
particularly for periods of recovery. For example, four 2-foot by 2-foot panels 
distributed evenly across a ceiling may provide better comfort conditions than one 
2-foot by 8-foot panel. 

emphasis on panel location for comfort should be incorporated into installation 
instructions or part of instruction program for certified installers. 

emphasis should be placed on the location of radiant-sensitive thermostats in clear 
view of the panels the thermostats control. 

3. The experience of the AFSD House occupants with the need to anticipate setforward times 
in the master bedroom and the likelihood of forgetting to set a thermostat back upon 
exiting a room indicates that some programmable and light or motion sensitive 
thermostats are recommended for frequently used rooms. These thermostats are 
commercially available and marketed by the panel manufacturer and others. 

36 Crist, Dean, "New Homes Are Larger, But Upper End Stalls," Housing Economics, National Association 
of Home Builders, Washington, DC, March 1994, pp. 9-11. 
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4. Discomfort associated with panel cycling may be alleviated with a thermostat more 
sensitive to operative temperature and located in better view of the panel or some type 
of modulating device to "micro-cycle" the panel as steady-state conditions are approached. 
The modulation would be designed to "smooth" the peaks and valleys in the operative 
temperature that are associated with panel cycling. 

Follow-up on the Kansas State proposal to employ their Comfort and Building Analysis 
Program in analysis of the data from the AFSD House would provide important validation 
of the Kansas State model. Validation of a model that can be run on a personal computer 
and used to design radiant panel installations to comfort conditions is an important part 
of the radiant system commercialization process. 

Home owners and HVAC contractors need a handbook that gives them access to the 
information on the principles of radiant heat transfer and the operation of fast-acting 
radiant panels. Although this information is readily available to a small group of 
researchers and engineers through the manufacturer's engineering manual, greater 
diffusion of innovative heating systems such as fast-acting radiant panels hinges upon 
home owners' and HVAC contractors' understanding and acceptance of radiant heat 
transfer, system design, and system function. 37 

Researchers are currently working on mean radiant and operative temperature sensors that 
do not have an undesirably high time constant. The results of this field study should be 
used to encourage and support the development and commercialization of operative 
sensing technologies. 

Concern among home owners regarding the electro-magnetic fields (EMFs) associated 
with home appliances and installed equipment varies widely and is based on limited 
information. Electric, radiant systems vary widely in electro-magnetic field generation 
but could be tested for conformance to a "prudent avoidance" standard. 38 While 
informal review by Northeast Utilities found Enerjoy to be at the lower range of EMF 
generation among radiant systems, the manufacturer concurs with the recommendation to 
establish a "prudent avoidance'' standard and procedures for its measurement. 

5. 

6.  

7. 

8. 

37 The lack of available information on and reluctance to explore new innovative, energy-efficient 
technologies is nicely discussed by R. B. Hayter in "Comfort Education for Energy Conservation," ASHRAE 
Transactions, 1987, Volume 93, Part 1. 

38 Wilson, Alex, 'Building Design and EMF," Environmental Building News, March/April 1994, pp. 8-11. 
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APPENDIX A 

Research Home Floor Plans 









APPENDIX B 

Radiant Panel and Monitoring Equipment 







APPENDIX C 

Thermal Comfort Survey 



THERMAL COMFORT SURVEY 

A comparison of the thermal comfort provided by the two heating systems in this research home 
is being performed during this heating season. Your input is both confidential and greatly 
appreciated. 

Date: Heating System in operation: Heat Pump Radiant Ceiling 

Time: System status: On Off 

Station : Family Room Master Bedroom Dining Area 

Your health (simply note if your are experiencing any anything such as cold or flu symptoms): 

Your attire (briefly describe your clothes, except undergarments): 

Below circle any general thermal discomfort, draft, or temperature asymmetry you may have 
experienced, the relative strength of this sensation on the given scale, and the affected areas of 
your body. 

Thermal discomfort 

Draft 

Temperature Asymmetry 

Comments: 



APPENDIX D 

Research Home Blower Door Test 







APPENDIX E 

Thermal Comfort Survey Results 





APPENDIX F 

Temperature Characterization Graphs 
for Each Heating System 
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